Viruses and virus-like particles (VLPs) have been demonstrated to be robust scaffolds for the construction of nanomaterials. In order to develop new nanoprobes for time-resolved fluoroimmuno assays as well as to investigate the two-dimensional self-assembly of viruses and VLPs, the icosahedral turnip yellow mosaic virus (TYMV) was investigated as a potential building block in our study. TYMV is an icosahedral plant virus with an average diameter of 28 nm that can be isolated inexpensively in gram quantities from turnips or Chinese cabbage. There are 180 coat protein subunits per TYMV capsid. The conventional N-hydroxysuccinimide-mediated amidation reaction was employed for the chemical modification of the viral capsid. Tryptic digestion with sequential MALDI-TOF MS analysis identified that the amino groups of K32 of the flexible N-terminus made the major contribution for the reactivity of TYMV toward N-hydroxysuccinimide ester (NHS) reagents. The reactivity was also monitored with UV-vis absorbance and fluorescence, which revealed that approximately 60 lysines per particle could be addressed. We hypothesized that the flexible A chain contains the reactive lysine because the crystal structure of TYMV has shown that chain A is much more flexible compared to B and C, especially at the N-terminal region where the Lys-32 located. In addition, about 90 to 120 carboxyl groups, located in the most exposed sequence, could be modified with amines catalyzed with 1-(3-dimethylaminopropyl-3-ethylcarbodiimide) hydrochloride (EDC) and sulfo-NHS. TYMV was stable to a wide range of reaction conditions and maintained its integrity after the chemical conjugations. Therefore, it can potentially be employed as a reactive scaffold for the display of a variety of materials for applications in many areas of nanoscience.
Turnip yellow mosaic virus as a chemoaddressable bionanoparticle.
Abstract
DOI
10.1021/bc060391s
Year