Chronic microfiber exposure in adult Japanese medaka (Oryzias latipes).


Microplastic fibers (MFs) pollute aquatic habitats globally via sewage release, stormwater runoff, or atmospheric deposition. Of the synthetic MFs, polyester (PES) and polypropylene (PP) are the most common. Field studies show that fish ingest large quantities of MFs. However, few laboratory studies have addressed host responses, particularly at the organ and tissue levels. Adult Japanese medaka (Oryzias latipes), a laboratory model fish, were exposed to aqueous concentrations of PES or PP MFs (10,000 MFs/L) for 21 days. Medaka egested 1,367 ± 819 PES MFs (0.1 ± 0.04 mg) and 157 ± 105 PP MFs (1.4 ± 0.06 mg) per 24 hrs, with PP egestion increasing over time. Exposure did not result in changes in body condition, gonadosomatic- or hepatosomatic indices. PES exposure resulted in no reproductive changes, but females exposed to PP MFs produced more eggs over time. MF exposure did not affect embryonic mortality, development, or hatching. Scanning electron microscopy (SEM) of gills revealed denuding of epithelium on arches, fusion of primary lamellae, and increased mucus. Histologic sections revealed aneurysms in secondary lamellae, epithelial lifting, and swellings of inner opercular membrane that altered morphology of rostral most gill lamellae. SEM and histochemical analyses showed increased mucous cells and secretions on epithelium of foregut; however, overt abrasions with sloughing of cells were absent. For these reasons, increased focus at the tissue and cell levels proved necessary to appreciate toxicity associated with MFs.