Title | Identification of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone by reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. |
Publication Type | Journal Article |
Year of Publication | 2009 |
Authors | Cui, Y, Frey, RL, Ferry, JL, Ferguson, PL |
Journal | Rapid Communications in Mass Spectrometry : Rcm |
Volume | 23 |
Issue | 8 |
Start Page | 1212 |
Pagination | 1212 - 1220 |
Date Published | 04/2009 |
Abstract | A reversed-phase high-performance liquid chromatography/electrospray tandem mass spectrometry method was developed for the characterization of hydroxyl radical oxidation products of N-hexanoyl-homoserine lactone (C6-HSL), a member of the N-acylhomoserine lactone (AHL) class of microbial quorum-sensing signaling molecules identified in many Gram-negative strains of bacteria. Six products were identified: four with molecular weight (MW) of 213 and two with MW of 260. The characteristic product ions formed through collision-induced dissociation (CID) provided diagnostic structural information. One of the photolysis products was determined to be N-(3-oxohexanoyl)homoserine lactone (3OC6-HSL), a highly active quorum-sensing signal, by comparison with a reference standard. Three structural isomers with the same mass as 3OC6-HSL were identified as acyl side chain oxidized C6-HSL (keto/enol functionalized) by accurate mass measurement and the structures of these products were proposed from CID spectral interpretation. Two structural isomers formed from concurrent oxidation and nitration of C6-HSL were also observed and their structures were postulated based on CID spectra. In addition to the six hydroxyl radical oxidation products formed from the C6-HSL precursor, five additional compounds generated from combined oxidation and lactonolysis of C6-HSL were identified and structures were postulated. |
DOI | 10.1002/rcm.3991 |
Short Title | Rapid Communications in Mass Spectrometry : Rcm |