Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.

TitleAnalysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.
Publication TypeJournal Article
Year of Publication2012
Authorsvon der Kammer, F, Ferguson, PL, Holden, PA, Masion, A, Rogers, KR, Klaine, SJ, Koelmans, AA, Horne, N, Unrine, JM
JournalEnvironmental Toxicology and Chemistry
Volume31
Issue1
Start Page32
Pagination32 - 49
Date Published01/2012
Abstract

Advances in the study of the environmental fate, transport, and ecotoxicological effects of engineered nanomaterials (ENMs) have been hampered by a lack of adequate techniques for the detection and quantification of ENMs at environmentally relevant concentrations in complex media. Analysis of ENMs differs from traditional chemical analysis because both chemical and physical forms must be considered. Because ENMs are present as colloidal systems, their physicochemical properties are dependent on their surroundings. Therefore, the simple act of trying to isolate, observe, and quantify ENMs may change their physicochemical properties, making analysis extremely susceptible to artifacts. Many analytical techniques applied in materials science and other chemical/biological/physical disciplines may be applied to ENM analysis as well; however, environmental and biological studies may require that methods be adapted to work at low concentrations in complex matrices. The most pressing research needs are the development of techniques for extraction, cleanup, separation, and sample storage that introduce minimal artifacts to increase the speed, sensitivity, and specificity of analytical techniques, as well as the development of techniques that can differentiate between abundant, naturally occurring particles, and manufactured nanoparticles.

URLhttp://dx.doi.org/10.1002/etc.723
DOI10.1002/etc.723
Short TitleEnvironmental Toxicology and Chemistry